KPDES FORM 1

KENTUCKY POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT APPLICATION

This is an application to: (check one)		A complete applie	cation c	onsists	of thi	s form a	and one	of the	
Apply for a new permit.		following:							.*
Apply for reissuance of expiring p	ermit.	Form A, Form B,	Form (C, Forn	ı F, or	Form S	C		
Apply for a construction permit.								٠	
Modify an existing permit.		For additional in	ıforma	tion co	ntact:				
Give reason for modification unde	r Item II.A.	KPDES Branch	(502)5	64-341	0	_			
		AGENCY							
I. FACILITY LOCATION AND CON		USE							
A. Name of Business, Municipality, Com	pany, Etc. Requesting Perr	nit							
Thoroughbred Mining Company, LLC									e*
B. Facility Name and Location		C. Primary Mai	ling Ac	ldress (all facil	ity corres	pondence	will be s	ent to
Facility Location Name:		this address). I Facility Contact Na	nclude o	wner's I	mailing	address ((if differ	ent) in D	
Pacinty Education Name.		Facility Collact Na	une and i	ilie. W	и. 🗀 т	VIS. []			
Thoroughbred Mine		Dianna Tickner							
Facility Location Address (i.e. street, road, etc., no	t P.O. Box):	Mailing Address:							
U.S. Rt. 431 & KY 4277		701 Market Stree							
Facility Location City, State, Zip Code:		Mailing City, State	, Zip Cod	le:					
Central City, KY		St. Louis, MO 63	101						41
D. Owner's name (if not the same as in part A and	IC):	Facility Contact Te		Number:					
			•					A .	
		314-342-3400							
Owner's Mailing Address:		Owner's Telephone	e Number	(if diffe	rent):				
						· - · · · · · · · · · · · · · · · · · · ·			
II. FACILITY DESCRIPTION									
Provide a brief description of activities,	products etc: This is an ur	derground mining	operati	on whi	ich wil	1 recove	er coal i	ocerve	for
nearby use or sale. The project will include									
encompass approximately 11,000 underg									
reserves over a 30-year span typically en								11 10115	01
B. Standard Industrial Classification (SIG		s. Post-Illilling lair	u use is	11511 at	iu who	ille liai	лас.	- 55.4 1/	
		- 104-01							
	- Underground Mining								
Description:	- Bituminous Surface	·····			-T				
l i									
Other SIC Codes: Minin	g								
III. FACILITY LOCATION									
A. Attach a U.S. Geological Survey 7 ½	minute quadrangle man for	the site. (See instr	uctions)					- 1
B. County where facility is located:	minute quadrangre map for				2 1! .	1-1-1-			
Muhlenberg		City where facility Central City	y is loca	ated (11	арри	cable):		•	
C. Body of water receiving discharge:		Contrar City							
Unnamed Tributary to Little Cypress Cro	aak								
D. Facility Site Latitude (degrees, minute		Facility Site Long	ritude (4	legree	min	ites sec	onde).	87_08	18
	· · · · · · · · · · · · · · · · · · ·				, 111111	iics, sec	onus).	07-00-	10
E. Method used to obtain latitude & long		GPS, Map Interrp	olation						
F. Facility Dun and Bradstreet Number (DUNS #) (if applicable):								**

IV. OWNER/OPERATOR INFORMAT	TION		
A. Type of Ownership: Publicly Owned Privately Own	ned State Owned	Both Public and Priv	ate Owned Federally owned
B. Operator Contact Information (See inst		Telephone Number:	
N/A		Telephone (vamber)	s
Operator Mailing Address (Street):			
Operator Mailing Address (City, State, Zip Code):			
Is the operator also the owner? Yes No		Is the operator certified? I	f yes, list certification class and number below.
Certification Class:		Certification Number:	
V. EXISTING ENVIRONMENTAL PE	RMITS		
Current NPDES Number:	Issue Date of Current Pern	nit:	Expiration Date of Current Permit:
Number of Times Permit Reissued:	Date of Original Permit Iss	suance:	Sludge Disposal Permit Number:
Kentucky DOW Operational Permit #:	Kentucky DSMRE Permit 889-5013	Number(s):	
Which of the following additional environ		n categories will also a	upply to this facility?
which of the following additional crivitoria	mentar permit registratio	er categories will also a	ar.
CATEGORY	EXISTING PER	MIT WITH NO.	PERMIT NEEDED WITH PLANNED APPLICATION DATE
Air Emission Source			
Solid or Special Waste			
Hazardous Waste - Registration or Permit			
			`# [;]
VI. DISCHARGE MONITORING REP	PORTS (DMRs)		
	s to specifically identify	the name and telephon	regular schedule (as defined by the KPDES are number of the DMR official and the DMR
A. DMR Official (i.e., the department designated as responsible for submitting Division of Water):		Dianna Tickner	'#'
DMR Official Telephone Number:		314-342-3400	
B. DMR Mailing Address:	11	(10,1100	
 Address the Division of Water wi Contact address if another individ 			s for you; e.g., contract laboratory address.
DMR Mailing Name:	Dianna Tickner		'A'
DMR Mailing Address:	701 Market Street	n'te 300	
DMR Mailing City, State, Zip Code:	St. Louis, MO 63101	· 	

DEP 7032

VII. APPLICATION FILING FEE	
examine the base and filing fees listed below and in the Form	ion filing fee equal to twenty percent of the permit base fee. Please 1 instructions and enclose a check payable to "Kentucky State e include the KPDES permit number on the check to ensure proper General Instructions."
Facility Fee Category:	Filing Fee Enclosed:
Surface Mine	\$240
VIII. CERTIFICATION	
with a system designed to assure that qualified personnel properly of the person or persons who manage the system, or those persons	nts were prepared under my direction or supervision in accordance gather and evaluate the information submitted. Based on my inquiry directly responsible for gathering the information, the information te, and complete. I am aware that there are significant penalties for mprisonment for knowing violations.
NAME AND OFFICIAL TITLE (type or print):	TELEPHONE NUMBER (area code and number):
Mr. Ms. Dianna Tickner President - Thoroughbred Mining Company, LI	CC 314-342-3400
SIGNATURE	DATE:
Deanna Sichni	24 February 2009
Return completed application form and attachments to: KPDES B	ranch Division of Water Frankfort Office Park 14 Railly

Return completed application form and attachments to: KPDES Branch, Division of Water, Frankfort Office Park, 14 Reilly Road, Frankfort, KY 40601. Direct questions to: KPDES Branch at (502) 564-3410.

KPDES FORM C

KENTUCKY POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT APPLICATION

A complete application consists of this form and Form 1. For additional information, contact KPDES Branch, (502) 564-3410.

Name of Facility: Thoroughbred Mining Company, LLC
Thoroughbred Mine

AGENCY
USE

County: Muhlenberg

AGENCY
USE

For each outfall list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

Outfall No.		LATITUDE			LONGITUDE	3	
(list)	Degrees	Minutes	Seconds	Degrees	Minutes	Seconds	RECEIVING WATER (name)
SS-1	37	19	15	87	08	35	Unnamed Tributary to Little Cypress Creek
SS-2	37	19	15	87	08	25	Unnamed Tributary to Little Cypress Creek

II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES

- A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfall. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) all operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) the average flow contributed by each operation; and (3) the treatment received by the wastewater. Continue on additional sheets if necessary.

	OUTFALL NO.	OPERATION(S) CONTRI	BUTING FLOW	TREATM	ENT
	(list)	Operation (list)	Avg/Design Flow (include units)	Description	List Codes from Table C-1
	SS-1	42.9 acres watershed	Precipitation Dependant	Sedimentation	I-U
9	SS-2	45 acres watershed	Precipitation Dependant	Sedimentation	I-U

II. FLOWS	, SOURCES	S OF POL	LUTION	, AND TRE	ATMENT	TECH	OLOGIE	ES (Continue	ed)		
C. Except for	storm water	runoff, lea	ıks, or spi	lls, are any of	f the discha	arges des	scribed in I	tems II-A or	B intern	mittent or se	asonal? .
	Yes (Co	mplete the	following	g table.)		\boxtimes	No (Go	to Section II	I.)		
OUTFALL	OPERA'			QUENCY	,	E . D		FLOW			
NUMBER	CONTRIE FLO		Days Per Wee	Months k Per Year		Flow Rat (in mgd)			ify with u		Duration (in days)
(list)	(lis	t)	(specify average)		Long-Ter Average		Maximum Daily	Long-Terr Average	n N	Maximum Daily	
											(#i)
III. MAXIM	IUM PROD	UCTION									
A. Does an e	effluent guide	eline limita	tion pron	nulgated by E	PA under S	Section 3	304 of the 0	Clean Water	Act app	ly to your fa	cility?
	Yes (Co	mplete Iten	n III-B) L	ist effluent g	uideline ca	tegory:					'يور ^د
\boxtimes	No (Go	to Section 1	IV)								<i>a</i> .
B. Are the li	mitations in	the applica	ble efflue	nt guideline e	expressed i	n terms	of producti	on (or other	measure	es of operation	on)?
	Yes (Co	mplete Iten	n III-C)	\boxtimes	No (Go	to Secti	on IV)				
				st the quanti its used in the							num level of s.
				JM QUANT						Affected O	utfalls
Quantity Per	Day	Units of M	1easure	0	peration, l	Product specif		, Etc.	(li	ist outfall n	umbers)
IV. IMPRO	VEMENTS						-				Nation 1
discharge	g, or operati s described	ion of was in this app	tewater elication?	state or local equipment or This included letters, stipula	practices s, but is n	or any ot limite	other env	ironmental pait conditions	orogram s, admir	s which ma	construction, ny affect the
	Yes (Con	mplete the	following	table)	\boxtimes	No (Go	to Item IV	V-B)			
IDENTIFICATI AGREE	ON OF CONI CMENT, ETC.		AFFE No.	CTED OUTFA Source of Di		BRIEF	DESCRIPT	ION OF PROJ	ЕСТ	FINAL COM Required	PLIANCE DATE Projected
			110.	Source or DI	senai St					Nequireu	Frojected
 											

OPTIONAL: You may attach additional sheets describing any additional water pollution control programs (or other environmental projects which may affect your discharges) you now have under way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

POLLUTANT	SOURCE	POLLUTANT	SOURCE
No significant concentrations of toxic pollutants or hazardous substances are believed to be present in any outfall.			
			`.sv.'
VI. POTENTIAL DISCHARGES	NOT COVERED BY ANA	ALYSIS	
A. Is any pollutant listed in Item V-c produce over the next 5 years as			roduce, or expect to use or
Yes (List all such p	ollutants below)	No (Go to Item VI-F	3)
			ʻg:
 Are your operations such that you discharge of pollutants may durin 		or products can reasonably be expected to times the maximum values report	
Yes (Complete Item	ı VI-C) 🛛 No	(Go to Item VII)	*s:*
	I-B, explain below and desc	ribe in detail to the best of your abil	ity at this time the sources and
 If you answered "Yes" to Item V expected levels of such pollutants additional sheets if you need mor 	s which you anticipate will b	e discharged from each outfall over	the next 3 years. Continue on
expected levels of such pollutants	s which you anticipate will b	e discharged from each outfall over	the next 3 years. Continue on
expected levels of such pollutants	s which you anticipate will b	e discharged from each outfall over	's'

Revised June 1999

See instructions before proceeding - Complete one set of tables for each outfall - Annotate the outfall number in the

INTAKE AND EFFLUENT CHARACTERISTICS

space provided.

A, B, & C:

VII. BIOLOGICAL TO	XICITY TESTING DATA			
	e of or reason to believe that any big water in relation to your discharge		chronic tox	icity has been made on any of your
Yes (Iden	tify the test(s) and describe their pu	urposes below)		No (Go to Section VIII)
				Sact
				Spet
VIII. CONTRACT ANA	LYSIS INFORMATION			
Were any of the analyses rep	ported in Item V performed by a co	ontract laboratory or cons	sulting firm?	?
	he name, address, and telephone nu yzed by each such laboratory or fire			No (Go to Section IX)
NAME	ADDRESS	TELEPH (Area code &		POLLUTANTS ANALYZED (list)
SGS North America, Inc.	P.O. Box 752 Henderson, KY 42419	270-827-1187		See Part V, A & B
				1se
V CEDTIFICATION				
IX. CERTIFICATION		-		
with a system designed to as of the person or persons wh submitted is, to the best of a	w that this document and all attack ssure that qualified personnel prope to manage the system, or those per my knowledge and belief, true, acc i, including the possibility of fine at	orly gather and evaluate to sons directly responsible curate, and complete. I a	he informate for gatherian m aware tha	ion submitted. Based on my inquiry ng the information, the information at there are significant penalties for
NAME AND OFFICIAL TI			<u> </u>	BER (area code and number):
Dianna Tickner President - Thoroughbred M	lining Company, LLC	314-342-3	3400	
SIGNATURE	A .	DATE		
· Maar ' A	letain		Kaha	Jam 7009

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. (See instructions)

EFFLUENT CHA	ARACTERIST	ICS (Continued fr	om page 3 of Fo	rm C)					OUTFALL NO.	001*	
provide the results	of at least one	analysis for every po	ollutant in this tab	le. Complete one tal	ole for each outfa	ll. See instruction	s for additional deta	iis			
			2. EFFLUENT				3. UN	ITS blank)	4	. INTAKE	
a. Maximum l	Daily Value	b. Maximum 3 (if avail	0-Day Value able)	c. Long-Term /	Avg. Value	d. No. of	a. Concentration	b. Mass	a. Long-Term A	vg. Value	ь.
(1) Concentration	(2) Mass	(1) Concentration	(2) Mass	(1) Concentration	(2) Mass	Analyses			(1) Concentration	(2) Mass	No of Analyses
<2.0						- ;	mg/l				ę
<0.01						_	mg/l				
2.4						_	mg/l				
				13		6	mg/l				
15						1	mg/l				
VALUE		VALUE		VALUE	2	5		MGD	VALUE		
VALUE	8.8	VALUE		VALUE		1		ိင	VALUE		
VALUE	22	VALUE		VALUE		-		ိင	VALUE		
MINIMUM	MAXIMUM	MINIMUM 7.28	MAXIMUM 8.00			6	STAN	STANDARD UNITS			
	EFFLUENT CHANGE TO THE PROVIDE TO THE PROVIDENT CHANGE	EFFLUENT CHARACTERIST provide the results of at least one: a. Maximum Daily Value (1) (2) Concentration Mass -0.01 2.4 VALUE VALUE 8.8 VALUE 22	a. Maximum Daily Value a. Maximum Daily Value (if avail (1) (2) (2) (2) (1) (2) (3) (4) (4) (4) (5) (4) (6) (6) (7) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	provide the results of at least one analysis for every pollutant in this tab 2. EFFLUENT a. Maximum Daily Value (1) (2) (1) (2) Concentration Mass Concentration Analysis for every pollutant in this tab (if available) (1) (2) (1) (2) (1) (2) (1) (2) (3) (1) (2) (4) (5) Concentration Mass VALUE VALUE	Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one tal 2. POLLUTANT 1. a. Maximum Daily Value (1) Concentration According Demand (BOD) Concentration CCOD) Concentration CCOD) Concentration CCOD) Concentration CCOD) Concentration COD) Concentration COD) Concentration COD) CONCENTRATION Mass Concentration Value Value	EFFLUENT CHARACTERISTICS (Continued from page 3 of Form C) provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfart in this table. Complete outfart in this table. Complete outfart in this table. Complete outfart in this table. Conglete outfart in this table.	EFFLUENT CHARACTERISTICS (Continued from page 3 of Form C)	EFFLLIENT CHARACTERISTICS (Continued from page 3 of Form C)	Analyses	Mass Long-Term (1) Concentration VALUE VALUE VALUE VALUE VALUE	OUTFALL NO. 4. INTAR (optiona a. Long-Term Avg. Valt (1) (2) Concentration Mass VALUE VALUE VALUE VALUE VALUE

S

Part B - In the MARK "X" column, place an "X" in the Believed Present column for each pollutant you know or have reason to believe is present. Place an "X" in the Believed Absent column for each pollutant you believe to be absent. If you mark the Believed Present column for any pollutant, you must provide the results of at least one analysis for that pollutant. Complete one table for each outfall. See the instructions for additional details and requirements.

POLLUTANT	MARK	4. MARK "X"			EFI	3. EFFLUENT				UNITS		INTAKI	6. INTAKE (optional)	
AND CAS NO.	Þ	Þ.	a. Maximum Daily Value	ly Value	b. Maximum 30-Day Value (if available)	0-Day able)	c. Long-Term Avg. Value (if available)	1 Avg. llable)	d. No. of	я.	b.	a. Long-Term Avg Value	Avg	No. of
(if available)	Believed Present	Believed Absent	(1) Concentration	(2) Mass	(1) Concentration	(2) Mass	(1) Concentration	(2) Mass	Analyses	Concentration	Mass	(1) Concentration	(2) Mass	Analyses
a. Bromide (24959-67-9)		X					į							
b. Bromine Total Residual		×												
c. Chloride		X												
Residual		×												
e. Color		×												
f. Fecal Coliform		×												
g. Fluoride (16984-48-8)		×												
h. Hardness (as CaCO ₃)	X													
i. Nitrate – Nitrite (as N)		×												
j. Nitrogen, Total														
(as N)		×												
k. Oil and Grease	X													
l. Phosphorous (as P), Total 7723-14-0		X			-									
m. Radioactivity						:								
(1) Alpha, Total		×												
		×												
(3) Radium Total		×												
(4) Kadium, 226, Total		×												

o. Sulfate
(as SO₄)
(14808-79-8)
(as S) Total (7439-98-7) y. Manganese, Total v. Iron, Total (7439-89-6) w. Magnesium Total (7439-96-4) x. Molybdenum s. Barium, Total (7440-39-3) t. Boron, Total (7440-42-8) u. Cobalt, Total (7440-48-4) (7439-96-6) z. Tin, Total aa. Titanium, Total p. Sulfite (as SO₄) (14286-46-3) POLLUTANT And CAS NO. q. Surfactants Part B - Continued (if available) Aluminum, Total (7429-90) (7440-31-5) (7440-32-6) Believed Present 2. MARK "X" × × b. Believed Absent × × × × × × × X Maximum Daily Value
(1)
(2)
Mass b. Maximum 30-Day
Value (if available)
(1)
(2)
Concentration Mass c. Long-Term Avg.
Value (if available)
(1)
(2)
Concentration Mass 1522 0.660.40 d. No. of Analyses 6 6 Concentration 4. UNITS b. Mass mg/l mg/l mg/l mg/l Long-Term Avg. Value
(1)
(2)
Concentration Mass 5.
INTAKE (optional) b. No. of Analyses

_

Part C – If you are a primary industry and this outfall contains process wastewater, refer to Table C-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in the Testing Required column for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark this column (secondary industries, nonprocess wastewater outfalls, and non-required GC/MS fractions), mark "X" in the Believed Present column for each pollutant you know or have reason to believe is present. Mark "X: in the Believed Absent column for each pollutant you believe to be absent. If you mark cither the Testing Required or Believed Present columns for any pollutant, you must provide the result of at least one analysis for that pollutant. Note that there are seven pages to this part; please review each carefully. Complete

one table (all seve	n pages) for ea	ach outfall. S	ee instructio	one table (all seven pages) for each outfall. See instructions for additional details and requirements.	ails and rec	luirements.			-		Ċ		7		-
.	5	2. MARK "X"		·			3. EFFLUENT				4. UNITS		INTAKE	5. INTAKE (optional)	
And CAS NO		•	7	•		h Maximum 3	n Daw	o I one Term		2	•	7	a.		N 5.
	Testing	Believed	Believed	Maximum Daily Value	Value	Value (if available)	able)	Value (if available)	able)	No. of	Concentration	Mass	Tong a com as 8 value		Analyses
(if available)	Required	Present	Absent	(1) Concentration	(2) Mass	(1) Concentration	Mass	(1) Concentration	(2) Mass	Analyses			(1) Concentration	(2) Mass	
METALS, CYANIDE AND TOTAL PHENOLS	VIDE AND TO	OTAL PHE	NOLS				3								
1M. Antimony															
Total	•														
(7440-36-0)	×									_	mg/l				
2M. Arsenic,					_										
Total (7440-38-2)	×									_	mo/l				
3M. Beryllium											C				
Total	<									•	2				
4M. Cadmium											q				
Total															
(7440-43-9)	×									_	mg/l				
5M. Chromium					- <u>-</u>										
(7440-43-9)	×									-	mg/l				
6M. Copper															
1 0tal (7550-50-8)	×										mg/l				
7M. Lead															
(7439-92-1)	X									_	mg/l				
8M. Mercury															
Total (7439-97-6)	×									_	mg/l				
9M. Nickel,															
1 otal (7440-02-0)	×										mø/l				
10M. Selenium,											(
Total (7782-40-2)	<									-					
IIM Silver										ľ	á				
Total													-		
(7440-28-0)	×									-	mg/1				

00

...

Part C - Continued	De l												
	7	2. MARK "X"				3. EFFLUENT	NT			4. UNITS		5. INTAKE (optional)	onal)
POLLUTANT And CAS NO.		po Po	p.	a.		b. Maximum 30-Day	y c. Long-Term Avg.		d.	a	b.	a. Long-Term Avg Value	ъ.
(if available)	Required	Present	Absent	(1) (2)	(2)	(1) (2) Value (II availa		No. of Analyses	Concentration	Mass	(1) (2)	Analyses
METALS CYANIDE AND TOTAL PHENOIS (Continued)	TOF AND TO	OTAL PHE	VOLS (Cont		Mass	ation 1	Concentration	Mass				Concentration Mass	\vdash
12M. Thallium,													
(7440-28-0)	×		-							mg/l			-
13M. Zinc,										q			
Total (7440-66-6)	×									mø/l			
14M. Cyanide,										(
(57-12-5)	×							_		mg/l			
15M. Phenols,													
Total	×									mg/l			
DIOXIN							1						
2,3,7,8 Tetra-				DESCRIBE RESULTS:	ULTS:								
chlorodibenzo,													
(1784-01-6)													
GC/MS FRACTION - VOLATILE COMPOUNDS	ON - VOLA	TILE COMI	POUNDS							J			
IV. Acrolein			4								····		-
2V.													
Acrylonitrile (107-13-1)			×										
3V. Benzene (71-43-2)			×										
5V. Bromoform (75-25-2)			×										
6V. Carbon Tetrachloride													
(56-23-5)			×										
7V. Chloro-				;									
benzene (108-90-7)			×										
8V. Chlorodibro-													
momethane													
(124-48-1)			×										

	2.					ب				4.			71	
	MARK "X"				EF	EFFLUENT				UNITS		INTAK	INTAKE (optional)	nal
,	1	-					3	•				a.	:	
	Believed	Believed	Maximum Daily Value	Value	Value (if available)	lable)	c. Long-Term Avg. Value (if available)	Avg. able)	No. of	a. Concentration	Mass	Long-1 erm Avg value	g value	
(if available) Required	Present	Absent	(1)	(2)	(1)	(2)	(I)	(2)	Analyses		·····	(I)	3	
7			Concentration	Mass	Concentration	Mass	Concentration	Mass	-			Concentration	Mass	L
Chloroethane														
(74-00-3)	<u> </u>	×												
IOV. 2-Chloro-														_
ethylvinyl Ether														
(110-75-8)		X												
IIV.														_
Chloroform														
(67-66-3)		×												
12V. Dichloro-														
bromomethane														
(75-71-8)		× 												
14V. 1,1-														_
Dichloroethane														
(75-34-3)		X												
15V. 1,2-														_
Dichloroethane		!												
(10/-06-2)		×												
16V. 1,1-														
Dichlorethylene (75.35.4)		<												
17V. 1,2-Di-														\rightarrow
chloropropane														
(78-87-5)		×												
18V. 1,3-														
Dichloropro-		!												
pylene (452-75-6)		×												
19V. Ethyl-														\perp
benzene	-		****											
(100-41-4)		×												
20V. Methyl														_
Bromide														
(74_83_0)		<				_		_					_	_

. 10

ethylene (156-60-5) 27V. 1,1,1-Tri-chloroethane (71-55-6) 30V. Vinyl Chloride (75-01-4) 28V. 1,1,2-Tri-chloroethane (79-00-5) 25V. Toluene (108-88-3) 26V. 1,2-Trans-Dichloro-23V. 1,1,2,2-Tetrachloro-ethane (79-34-5) 21V. Methyl Chloride (74-87-3) 29V. Trichloro-ethylene (79-01-6) 22V. Methylene Chloride (75-00-2) Part C - Continued 24V. 1.
POLLUTANT
And CAS NO. (if available) Tetrachloro-ethylene (127-18-4) a. Testing Required 2. MARK "X" a. Believed Present Believed Absent × × × × × × × **.** Concentration Maximum Daily Value (2) Mass (1) (2) Concentration Mass b. Maximum 30-Day Value (if available) 3. EFFLUENT (1) Concentration c. Long-Term Avg. Value (if available) (2) Mass d. No. of Analyses Concentration 4. UNITS b. Mass Concentration Long-Term Avg. Value INTAKE (optional) (2) Mass b. No. of Analyses

_

Part C - Continued	led														
.	5	2. MARK "X"				EFFI	3. EFFLUENT				4. UNITS		5. INTAKE (optional)	ptional)	
POLLUTANT And CAS NO.		, po		ë.		b. Maximum 30-Day	-Day	c. Long-Term Avg.	Avg.	d.	9.	Þ.	a. Long-Term Avg Value		No. of
(if available)	Required	Present	Absent	(1) (2)	(2)	(1) (2	(2)	Value (if avail	able) (2)	Analyses	Concentration	Mass	(A)		Analyses
	-			ation	Mass	Concentration	Mass	Concentration	Mass				ation	Mass	
GC/MS FRACTION - ACID COMPOUNDS	ION - ACID	COMPOUN	DS	1											
1A. 2-Chloro- phenol															
(95-57-8)			×												
2A. 2,4-															
Dichlor-															
(120-83-2)			×												
3A.															
2,4-Dimeth-															
ylphenol (105-67-9)			×												
4A. 4,6-Dinitro-															
o-cresol			•												
(1-24-32-1)			>												
phenol															
(51-28-5)			X												
6A. 2-Nitro-															
phenol (88-75-5)			×		,										
7A. 4-Nitro-															
phenol (100-02-7)			×												
8A. P-chloro-m-															
cresol (59-50-7)			×												
9A															
Pentachloro-			<												
(87-88-5)			>												
10A Dhanol															
(108-05-2)			×										<u> </u>		· · · ·
chlorophenol															
(88-06-2)			X												
GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS	ON - BASE/	NEUTRAL	COMPOUN	DS											
1B. Acena-															
phthene (83-32-9)			×												
									_			_	_	_	_

Part C - Continued	d														
.		2. MARK "X"		I		EFFL	3. EFFLUENT				4. UNITS		INTAKI	5. INTAKE (optional))
And CAS NO.	'n	۳	Þ.	ņ		b. Maximum 30-Day	-Day	c. Long-Term	Avg.	<u>e</u>	'n	<u>ج</u>	a. Long-Term Avg Value	Value	b. No. of
(if available)	Testing Required	Believed Present	Believed Absent	Maximum Daily Value	Value (2)	Value (if available)) ble)	Value (if available)	able)	No. of	Concentration	Mass		9	Analyses
	1			ation	·	Concentration	Mass	Concentration	Mass	, amaily ses			Concentration	Mass	
GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (Continued))N – BASE/I	NEUTRAL	COMPOUN	1	┨										
2B. Acena-							i								
(208-96-8)			×												
3B. Anthra-															
cene (120-12-7)			×						······································						
4B.															
(92-87-5)			×												
5B. Benzo(a)-															
anthracene (56-55-3)			×												
6B. Benzo(a)-															
pyrene (50-32-8)			×												
7B. 3,4-Benzo-															
fluoranthene (205-99-2)			×												
8B. Benzo(ghl)											;				
perylene (191-24-2)			×											• • • • • • • • • • • • • • • • • • • •	
9B. Benzo(k)-															
fluoranthene (207-08-9)			×		_										
10B. Bis(2-															
oethoxy)-			×												
methane (111-91-1)															
IIB. Bis															
(2-cnlor- oisopropyl)- Ether			×												
12B. Bis (2-ethyl-															
hexyl)-			×												
(117-81-7)															

benzyl phihalate (85-68-7) (85-68-7) (85-68-7) ISB 2-Chloro- maphrhalene (7005-72-3) ISB 2-Chloro- phenyl phenyl ether (7005-72-3) IPB Chioro- phenyl phenyl ether (7005-72-3) IPB Chioro- phenyl phenyl phenyl phenyl ISB 2-Chloro- phenyl	Part C - Continued 1. POLLUTANT And CAS NO. (if available) GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (Continued) Phenyl ether (101-55-3) 13B. 4-Bromo-phenyl ether (101-55-3) 14B. Butyl-	a. Testing Required	2. MARK "X" a. Believed Present	b. Believed Absent		3. EFFLUEN b. Maximum 30-Day Value (if available) (1) Concentration Max	3. EFFLUENT um 30-Day available) (2) on Mass	c. Long-Term Avg. Value (if available) (1) Concentration Ma	Avg. bie) (2) Mass	d. No. of Analyses	4. UNITS a. Concentration	4. UNITS tration	4. UNITS b. tration Mass	b. Long-T Mass (1)	b. Mass
00 nc 10-	14B. Butyl- benzyl phthalate (85-68-7)			×											
0- nc	15B. 2-Chloro- naphthalene (7005-72-3)			×											
ne ne	phenyl ether (7005-72-3)			×											
	17B. Chrysene (218-01-9)			×											
hyl	(a,h) Anthracene (53-70-3)			×											
hyl	19B. 1,2- Dichloro- benzene (95-50-1)			X					1						
hyl	20B. 1,3- Dichloro- Benzene (541-73-1)			×											
hyl	21B. 1,4- Dichloro- benzene (106-46-7)			×											
hyl	22B. 3,3- Dichloro- benzidene (91-94-1)			×											
	23B. Diethyl Phthalate (84-66-2)			X											

ı.	And CAS NO.	(if available)	GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (Continued)	24B. Dimethyl	Phthalate (131-11-3)	25B. Di-N-	butyl Phthalate	(84-74-2)	26B.	2,4-Dinitro-	(121-14-2)	27B.	2,6-Dinitro-	(606-20-2)	28B Di-n-octvl	Phthalate	(117-84-0)	29B. 1,2-	diphenyl-	hydrazine (as	(122-66-7)	30B.	Fluoranthene (208-44-0)	(86-73-7)	32B.	Hexachloro- benzene	(118-71-1)	33B.	Hexachloro-	(87-68-3)	34B.	cyclopenta-	diene	(//-4/-4)
	a. Testing	Required	ON - BASE/																															
2. MARK "X"	a. Believed	Present	NEUTRAL																															
	b. Believed	Absent	COMPOUN		×	;		×		4	>		•	×			×		<	×			×	×		×			<	×	:	×		
	a. Maximum Daily Value	(1) Concentration	DS (Continued)																															
	v Value	(2) Mass																								- 11 - 11 - 1				,				
Hag	b. Maximum 30-Day Value (if available)	(1) Concentration																																
3. EFFLUENT	0-Day	(2) Mass																																
	c. Long-Term Avg. Value (if available)	(1) Concentration						į																										
	Avg.	(2) Mass		•																														
	d.	Analyses																																
4. UNITS	a.																																	
	b.																																	
INTAK	a. Long-Term Avg. Value	(1) Concentration																																
5. INTAKE (optional)	. Value	(2) Mass																																
	b. No. of																																	

POLITION And CANNO Tedro Bellevel Masimum Duly value National Balay Concentration Mass Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentra	Part C - Continued	ed													
Testing Reserved Reserved Maximum Daily Value Value (If validate) Value (If validate) No. of Concentration Mass One of Concentration Mass One of Concentration Mass One of Concentration Mass One of Concentration One of Concentration Mass One of Concentration On			2. MARK "X"				3. EFFLUI	ENT				4. UNITS		5. INTAKE (op	ptional)
Traing Relived Marian Dally Value ((2 mail hab)) Value ((2 mail hab)) Value ((2 mail hab)) Value ((3 mail hab)) Value ((And CAS NO.	p.	'n	Ġ.	ë.		b. Maximum 30-D	ay	c. Long-Term A	vg.	d.	29	ē.	a. Long-Term Avg Val	
Required Present Abrent Concentration Mass Concentration Concentration Mass Concentration Mass Concentration Concentration Mass Concentration		Testing	Believed	Believed	Maximum Daily	Value	Value (if available	e	Value (if availa	ble)	No. of	Concentration	Mass	(
X X X X X X X X X X	(if available)	Required	Present	Absent	(1) Concentration	(2) Mass		· ·	(1) Concentration	Z (2)	Analyses				
1581 Intendible 1581 Inten	GC/MS FRACTI	ON – BASE/I	NEUTRAL	COMPOUN	OS (Continued)		-	ŀ	!					-	
	35B. Hexachlo-				:										
	roethane			!											
	(6/-/2-1)			×											
	36B. Indneo-														
	(1,2,5-00)-			•											
	(193-39-5)			>											
	37B.														
	Isophorone (78-59-1)			× 											
	38B.														
	Napthalene			;											
	(91-20-3)			×											
	Nitro-														
	benzene			×											
	(98-95-3)														
	40B. N-Nitroso-														
	dimethyl-			:											
	amine (62-75-9)			×											
	41B.							+		1					
	N-nitrosodi-n-														
-nitronitronyl6) henan- henan- 8) 8 2-4 Tri- c 2-1)	propylamine			×											
e e e e e e e e e e e e e e e e e e e	42B. N-nitro-							+							
6) henan	sodiphenyl-														
-b) henan8) -0) 2,4 Trie -2-1)	amine			×											
88) yrene0) 2,4 Tri- e	43B Dhenan														
8) yrene 0) 2,4 Tri- e e	threne														
7rene (-0) 2,4 Tri-	(85-01-8)			×					!						
-(a) 2,4 Tri-															
2,4 Tri- ; ;	44B. Pyrene (129-00-0)			× —											
-1)	45B. 1,2,4 Tri-														
1)	benzene			× 											
	(120-82-1)			>										· · · · ·	

, 5*	14P. Endrin (72-20-8)	13P. Endosulfan Sulfate (1031-07-8)	12P. β- Endosulfan (115-29-7)	11P. α- Endosulfan (115-29-7)	10P. Dieldrin (60-57-1)	9P. 4,4'-DDD (72-54-8)	8P. 4,4°-DDE (72-55-9)	7P. 4,4°-DDT (50-29-3)	6P. Chlordane (57-74-9)	5P. &-BHC (319-86-8)	4P. gamma-BHC (58-89-9)	3P. β-BHC (58-89-9)	2P. α-BHC (319-84-6)	1P. Aldrin (309-00-2)	GC/MS FRACTION - PESTICIDES	(if available)	POLLUTANT And CAS NO.	1.	Part C - Continued
															ON – PESTI	Testing Required	æ		led
															CIDES	Believed Present	x	2. MARK "X"	
;	X	×	×	×	×	×	×	×	×	×	×	×	×	×		Believed Absent	à		
															ation	aily V	æ		
٠	-														-				
															Concentration	Value (if available) (1) (2)). Maximum 30	EFFI	
, = -															Mass	able)	-Dav	3. EFFLUENT	
															Concentration	Value (if available) (1) (2)	c. Long-Term		
id															Mass	able)	Avg.		
															,	No. of Analyses	d.		
																Concentration	S	4. UNITS	
, i e																Mass	Д		
															Concentration	(1)	a. Long-Term Avg. Value	INTAK	
.7	:														Mass	(2)	7. Value	5. INTAKE (optional)	
																Analyses	No. of	<u>-</u>	

Part C - Continued	·													
		2. MARK "X"	_			EF	3. EFFLUENT				4. UNITS		5. INTAKE (optional)	otional)
And CAS NO.	a.	Dalia.	b.	a.		b. Maximum 30-Day	30-Day	c. Long-Term Avg.	Avg.	d.)	þ.	a. Long-Term Avg Value	
(if available)	Required	Present	Absent	(1) (2) Concentration Mass	(2) Mass	(1) Concentration	(2) Mass	(1) Concentration	(2) Mass	Analyses			(1) (Concentration M	(2)
GC/MS FRACTION - PESTICIDES	ION – PESTI	CIDES											ŀ	
15P. Endrin														_
Aldehyde (7421-93-4)			×											
(/421-93-4)			>											
16P Heptachlor (76-44-8)			×											
17P. Heptaclor														
Epoxide (1024-57-3)			×											
18P. PCB-1242			<											
19P. PCB-1254 (11097-69-1)			×											
20P. PCB-1221 (11104-28-2)			×											
21P. PCB-1232 (11141-16-5)			×											
22P. PCB-1248 (12672-29-6)			×											
23P. PCB-1260 (11096-82-5)			×											
24P. PCB-1016 (12674-11-2)			×											
25P. Toxaphene (8001-35-2)			×								· · · · · · · · · · · · · · · · · · ·			

Kentucky Pollutant Discharge Elimination System (KPDES)

High Quality Water Alternative Analysis

The Antidegradation Implementation Procedures outlined in 401 KAR 5:030, Section 1(3)(b)5 allows an applicant who does not accept the effluent limitations required by subparagraphs 2 and 3 of 5:030, Section 1(2)(b) to demonstrate to the satisfaction of the Environmental and Public Protection Cabinet that no technologically or economically feasible alternatives exist and that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the water is located. The approval of a POTW's regional facility plan pursuant to 401 KAR 5:006 shall demonstrate compliance with the alternatives analysis and socioeconomic demonstration for a regional facility. This demonstration shall also include this completed form and copies of any engineering reports, economic feasibility studies, or other supporting documentation

I. Permit Information Facility Name: Thoroughbred Mining Company, LLC Thoroughbred Mine KPDES NO.: 889-5013 (KDNR Permit No.) Address: 701 Market Street Suite County: Muhlenberg City, State, Zip Code: St. Louis, MO 63101 Receiving Water Name: Unnamed tributary of Little Cypress Creek

II. Alternatives Analysis - For each alternative below, discuss what options were considered and state why these options were not considered feasible.

Discharge to other treatment facilities. Indicate which treatment works have been considered and provide the reasons why discharge to these works is not feasible.

The nearest municipal sewage treatment facility is located at Central City. This plant is located approximately 2.4 miles from this project. This plant was not designed for or capable of treating either the type or volumes of water involved with this project. This option would almost certainly create influx problems for the Central City plant resulting in an "overload" to their system presenting the possibility that by-passes would occur leading to discharges of untreated municipal waste which would create a serious health threat.

Routing water to this plant would require a minimum of 12,540 feet of carrier lines, a network of lift and pump stations and obtaining extensive rights of way and easements. Conservatively estimating line at \$22/foot, a minimum of 2 lift stations at \$75,000, ignoring other stated requirements, the minimum cost of this option would greatly exceed \$500,000 dollars.

Transporting this volume of water by self-contained disposal trucks would be excessively expensive and impractical. Based on a required 25 year, 24 hour storm event calculation, the possible peak discharge from this project could exceed 1,112 million gallons per day. Rates quoted from Somerset Environmental in Somerset, KY indicated charges of \$65/hour (gate to gate)/3,000 gallon pick-up of non-hazardous wastewater and a \$0.49/gallon disposal fee.

2. Use of other discharge locations. Indicate what other discharge locations have been evaluated and the reasons why these locations are not feasible.

Green River was considered as the only other available discharge location. To route water directly to Green River would require approximately 6,203 feet of line, several lift stations, numerous easements, a containment structure and would require boring under Hwy 431. Excavation, installation and involved constructions would create a greater environmental disturbance than the proposed discharge location with same end results of discharging into a comparable quality water resource. Lift stations are site specific and vary greatly but are specific to topography and substrate composition:

Estimation of Costs of Lift Stations *Table 1 Pressure (LPS)

Pumping Stations (No. per mile by topography)	Flat	Rolling	Steep
200 gpm P.S. \$54,000	O		
100 gpm P.S. \$43,200	0	1	2
Composite Cost	\$0	\$43,200	\$194,400
от типента на применения в при	Gravity	gunder (Cord-Peru) (Cord-Arter and Landschapping and Advantage and Advance (Advance) and Advance (Advance) and	. B.
Pumping Stations (No. per mile by topography)	Flat	Rolling	Steep
200 gpm P.S. \$54,000	1	0	2
100 gpm P.S. \$43,200	2	1	2 %
Composite Cost	\$140,400	\$43,200	\$194,400

A Mathematical Model For Estimating Sewer Costs" by George A. Earle, III, P.E. and R. Paul Farrell Jr., P.E., Environment One Corporation

The cost of this option would easily exceed \$1 million dollars.

The placement and design of current discharge locations are engineered to be the most effective and the least invasive.

II. Alternatives Analysis - continued

3. Water reuse or recycle. Provide information about opportunities for water reuse or recycle at this facility. If water reuse or recycle is not a feasible alternative at this facility, please indicate the reasons why.

The drainage area is 87.91 acres* resulting in a peak possible discharge of 136,265 gpm. In order to reuse or recycle this water, a central collection system would have to be constructed which would cost in excess of \$1 million dollars. This would impede the profitability of this project since the water cannot be used at this site.

*Sediment Structure No. 1 is approximately 42.9 acres Sediment Structure No. 2 is approximately 45.0 acres

Using water from this project for on site dust suppression and watering of reclaimed areas was considered but the absorption rate does not support land application.

4. **Alternative process or treatment options.** Indicate what process or treatment options have been evaluated and provide the reasons they were not considered feasible.

As an alternative treatment option, sand filtration was evaluated but deemed not applicable. Sand filtration is used primarily as a pre-treatment to remove microbial contaminates, not particulate matter, in storm run-off from smaller urban drainage areas. The high sediment volumes involved in a storm event could clog the filtration unit rendering it ineffective. Sand filters do not control storm water and do not prevent downstream bank and channel erosion as proposed structures are designed to do. Also, the operational efficiency of these units in colder climates and freezing conditions has not been thoroughly evaluated. Studies indicate a treatment cost of \$12 per cubic foot volume* for this type of treatment

Using only silt fences and straw bales for sediment control was considered as per BMP's but were determined to be inadequate independent of other measures.

Other mining methods (i.e.: processes) were considered. Mining methods are dictated by geological factors including elevation and thickness of the coal seam and the amount of overburden covering the reserves. This project is for a surface disturbance to provide a "face-up" for a deep mine. This is the only feasible way to access these reserves.

Constructing an on-site storm water treatment facility was considered. The volume of discharge and the lift required make this an unfeasible option. Consultation with Beckman Environmental in Cincinnati, OH, a company that specializes in these types of constructions, revealed a recent bid on a project in Columbus, OH involving a lift of 30 feet, a peak discharge of 3,800 gpm (compared with 136,265 gpm for this project), a grit removal station, and influent and effluent lines at \$2.5 million dollars. Using this demonstration, treatment would exceed \$650 per gallon volume.

Comparatively, an industry estimate for construction of a medium capacity embankment pond is approximately \$40,000 while construction of a dug out bench pond is estimated at roughly \$7,500.

* The Cost and Effectiveness of Stormwater Management Practices, Minnesota Department of Transportation, June 2005

II. Alternatives Analysis - continued

5. **On-site or subsurface disposal options.** Discuss the potential for on-site or subsurface disposal. If these options are not feasible, then please indicate the reasons why.

On-site disposal was considered as a disposal option. The construction of an on-site wastewater treatment type plant would require a facility engineered to handle over 136,265 gpm during a 24-hour, 25-year storm event.* Construction cost for package plants are engineered to specific location, load and other conditions but with a required collection system would be expected to exceed \$1 million dollars. These plants require a continual power source, daily maintenance, periodic repair and leave a large footprint. After completion of this project, the plant would either have to be removed or abandoned to unsightly, dangerous rubbish.

*The Rational equation is the simplest method to determine peak discharge from drainage basin runoff. It is not as sophisticated as the <u>SCS TR-55 method</u>, but is the most common method used for sizing sewer systems.

The installation of a sanitary septic system, i.e., septic tank was evaluated but is not an applicable option. Building a system large enough to handle the volume of water would be impractical. Septic systems are design to degrade organic waste and biodegradable material over time by anaerobic digestion. While the source water would most likely contribute some organic material and some needed bacteria, this would be inadequate to decompose the sediment and would work essentially the same as a sediment structure.

The possibility of using old mined out underground works was considered as a disposal option but was deemed as potentially dangerous due to the uncertainty of the remaining structures and the possibility of a "blow-out" or leakage could occur causing both a public safety and environmental threat.

6. **Evaluation of any other alternatives to lowering water quality.** Describe any other alternatives that were evaluated and provide the reasons why these alternatives were not feasible.

Foregoing the entire operation as an alternate to lowering water quality was evaluated. This action would have negative economical impacts as the 450 anticipated permanent jobs directly related to this endeavor and the resulting \$21.7 million dollars in collective annual salaries, other indirectly related jobs and revenues including severance tax estimated at \$2.7 million annually would have negative economic consequences..

Accepting more stringent discharge limitations than allowed by regulation was discussed but because this would require more aggressive chemical treatment, the real potential for an environmental or personnel accident exist. The costs are extreme and are dependent upon water quality. Based on information from OSMRE, the cost for chemical treatment of a mildly acidic mine drainage with an average flow of 100 gpm using caustic soda was \$94,784. With a possible flow of over 392 mgpd during a rainfall event, the cost of this option could jeopardize the economic effectiveness of this entire project.

III. Socioeconomic Demonstration

1. State the positive and beneficial effects of this facility on the existing environment or a public health problem.

Some of the watersheds to be impacted by this project are of a poor nature due to road construction, previous mining, associated haul roads, belt lines and other mining associated activities. Once mitigation begins, the stream banks will be stabilized to prevent erosion, species indigenous to the area will be planted to establish an adequate riparian zone and stream channels will be rehabilitated to curb sedimentation. After reclamation, the area will be converted to a wildlife management area with some pastureland. This will provide a healthier habitat for aquatic species and wildlife leading to a more balanced ecosystem.

2. Describe this facility's effect on the employment of the area

The portal area is located near Central City, population 5,787. However the mine and coal to substitute natural gas plant are considered to be The Thoroughbred Community. The Thoroughbred Community consists of the following Kentucky Counties: Butler, Caldwell, Christian, Crittenden, Daviess, Hancock, Henderson, Hopkins, Logan, Lyon, McLean, Muhlenberg, Ohio, Todd, Trigg, Union, and Webster.

This project is expected to result in 450 permanent positions with more than 80% being residents of the Thoroughbred Community. Additionally, as a result of the coal to substitute natural gas plant and the mine operations activity, an additional 633 indirect and induced job-years annually are estimated to be generated.

Uı	nemplo	yment	t Rates-Muhlenberg
Year	U.S.	KY	Muhlenberg Co.
1990	6.3	5.9	8.7
1991	7.3	7.5	12.5
1992	7.4	6.9	12.5
1993	6.5	6.2	11
1994	5.5	5.4	9.5
1995	5.6	5.4	8.6
1996	5.4	5.6	8.5
1997	4.7	5.4	8.8
1998	4.3	4.5 8.3	7.4
1999	4.2		8.3
2000	4	4.1	6.5
2001	4.7	5.4	10.1
2002	5.8	5.6	8.6
2003	6	6.2	8.7
2004	5.5	5.3	7.3

3. Describe how this facility will increase or avoid the decrease of area employment.

This project will increase and avoid the decrease of the area's employment with the addition of the permanent direct jobs that will be added and with the indirect jobs created by the project. In December 2008, Muhlenberg County's unemployment rate was 8.0% and there were 1,059 people unemployed and seeking employment. The direct and indirect jobs provided by this project will reduce this number. This project is expected to have a 30-year life. The jobs created by this project are long term and will impact the local employment for many years. Coal could supply the coal to substitute natural gas plant or third party sales.

- 4. Describe the industrial or commercial benefits to the community, including the creation of jobs, the raising of additional revenues, the creation of new or additional tax bases.
 - Total expenditures related to operations of the mine are expected to result in an estimated \$31 million within the Commonwealth, \$24 million in the 17-county Thoroughbred Community and \$9 million in Muhlenberg County. Of the \$31 million spent within the Commonwealth, approximately \$11 million annually will be spent on locally provided goods and services within Kentucky including an estimated \$6 million annually to be spent within the 17-county Thoroughbred Community and \$4 million within Muhlenberg County. Coal is taxed at 4.5% per ton of which 50% is slated to be returned to the county of origin. Based on the projections of 66 million tons recovery, this project will contribute approximately \$89 million in severance taxes during the life of the project. These monies are used for local education, health services, judicial services and infrastructure projects.
- 5. Describe any other economic or social benefits to the community.

Direct and Indirect Economic Impacts on the 17-County Thoroughbred Community 2002-2035

(Millions, except Job-Years)

	Direct	Indirect & Induced	Total	Multiplier
Spending	\$1,917	\$707	\$2,624	1.37
Job-years	15,558	22,499	38,057	2.45
Income	\$1,049	\$577	\$1,627	1.55

Direct and Indirect Economic Impacts on Muhlenberg County 2002-2035

(Millions, except Job-Years)

	Direct	Indirect & Induced	Total	Multiplier
Spending	\$575	\$129	\$704	1.22
Job-years	4,927	4,986	9,914	2.01
Income	\$349	\$110	\$460	1.32

Every dollar the project pays in wages will produce an estimated additional 74 cents of income in the Commonwealth of Kentucky including 55 cents in the 17-county Thoroughbred Community and 32 cents in Muhlenberg County.

III. Socioeconomic Demonstration - continued

- 6. Will this project be likely to change median household income in the county?
- 7. Will this project likely change the market value of taxable property in the county?
- 8. Will this project increase or decrease revenues in the county?
 9. Will any public buildings be affected by this system?
- 10. How many households will be *economically* or *socially* impacted by this project?

How many nouseholds will be *economically* or *socially* impacted by this project?

1050

11. How will those households be *economically* or *socially* impacted? (For example, through creation of jobs, educational opportunities, or other social or economic benefits.)

This project will permanently (+30 Years) employ approximately 450 residents providing jobs and benefits estimated at approximately \$80,000/year. According to data gathered by KY Coal Facts, the average weekly earnings for a western Kentucky miner in 2004 was \$1,142.81. U.S. Census Bureau shows than in 2000, less than 10% of residents in this 17 county area had Bachelor's degrees or higher. In 2005, the median income for a 4 year college graduate was \$54,800. The wages paid by this project are not seen in other industries in the seventeen county area:

Included in this package are wages, health and dental insurances as well as disability and retirement compensation. Indirect employment is expected to provide an additional 600+ jobs in mining related industries. These indirect jobs are expected to pay approximately \$26,000/year. This is an annual employment salary of over \$51 million dollars. This influx of monies affords these households the ability to maintain or enhance their economic status and provides opportunities for improved social welfare afforded by these earnings.

Yes

<u>No</u>

 \boxtimes

12	. Does this project replace any other methods of sewage treatment to existing facilities? (If so describe how)	Yes	<u>No</u> .
	The residents in this area are served by a municipal sewage treatment facility.		
13	Does this project treat any existing sources of pollution more effectively? (If so describe how.) An area along Nelson Creek, a straight cut agricultural drainage ditch, will be rehabilitated including the development of 5 acres into a hardwood bottomland forest and wetland areas. This rehabilitation will reduce erosion of the stream and siltation of the receiving Green River reducing the potential for introduction of herbicides, pesticides and fertilizers into Green River. The development of these features will directly improve the surrounding ecosystem.	Yes	No

III. Socioeconomic Demonstration - continued		
111. Sociocconomic Demonstration - continucu	X 7	NT.
14. Does this project eliminate any other sources of discharge or pollutants? (If so describe how.)	<u>Yes</u> ⊠	
The project area contains access roads and previously disturbed ground that contribute sediment to downstream waters. These areas will undergo improved drainage and planting of more suitable vegetation.	` *	٠
15. How will the increase in production levels positively affect the socioeconomic condition of the area?		
This project will remove approximately 66 million tons of coal over approximately 35 years that would not have been recovered or made available to the market otherwise. This is a long term commitment to the Thoroughbred community and its residents. It will result in continued employment for approximately 450 people, aid in development and maintenance of indirect jobs and will contribute \$5.4 million dollars annually in tax revenues. These monies are used for local education, health services, judicial services and infrastructure projects which service the people of this area.	· w	•
16. How will the increase in operational efficiency positively affect the socioeconomic condition of the area? The mining techniques involved with this project (face-up for a deep mine recovery) provide the only		٠
economical means of recovering these coal reserves. Reclamation of this project area will result in an area designated as a wildlife management area. This enhancement will provide an area that is both aesthetically pleasing and environmentally function.	Tues!	
The increase in operational efficiency will in turn increase the production levels leading to increased new employment opportunities in the area, maintenance of existing employment, development and maintenance of indirect jobs and increase in the amount of personal and severance tax the area receives.		
	`#.'	٠
IV Certification: I certify under penalty of law that this document and all attachments were prepared under my direct supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the informsubmitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am at there are significant penalties for submitting false information, including the possibility of fine and imprisonment for know violations.	nation gatherin ware that	ng t
Name and Title: Dianna Tickner President - Thoroughbred Mining Company, LLC Telephone No.: 314-342-3400	ari	- "
Signature: Date: 20 Februa	m 20	29

ALH (29/5

ENGINEERING CONSULTING SERVICES, INC.

CIVIL E ENVIRONMENTAL MINING 1005 S. MAIN, STE. 102

CORBIN, KY 40701

February 27, 2009

K.P.D.E.S. Division of Water 200 Fair Oaks Lane Frankfort, KY 40601

Please find enclosed required documentation for application for an Individual K.P.D.E.S. permit for Thoroughbred Mining, LLC.

The proposed project, located in Muhlenberg County, is a surface disturbance for an underground mine face-up. Two sediment structures and discharge locations are proposed as depicted on the attached map.

Water sample analyses submitted on KPDES Form C are from background analysis collected as required for DNR permitting. As neither sediment structure has been constructed. Thoroughbred Mining, LLC proposes sampling for the other required parameters within one year of commencement of this project. This sampling will more definitively identify influences related to the mining operation.

Previously, Thoroughbred Mining, LLC had sought coverage under the "General Permit for Coal Mining Activities in the Commonwealth of Kentucky". Because of time constraints and the uncertainly of when the General Permits is going to be re-issued, Thoroughbred Mining, LLC is submitting this application for an Individual Discharge Permit in hopes of expediting the permitting process. Should the General Permit be approved shortly, then Thoroughbred Mining would seek coverage under whichever options affords them the most expeditious coverage.

Celebrating 25 Nears of Service

If you have questions or need additional information, please contact me at (606) 526-6396 or by email: dhaggard@engrservices.com.

Your prompt review of this application is appreciated.

Debbie Haggard, Biologist

Enclosures: KPDES Form 1

KPDES Form C

HQAA

Watershed Map

Quad Map

Application Fee (\$240)

